martes, 31 de marzo de 2015

UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS. Crisis de la Física Clásica, Origen de la Física Cuántica, Radiación del Cuerpo Negro, la Hipótesis Cuántica, Cuantización de la Energía, Efecto Fotoeléctrico, Espectros de Emisión, Absorción de Gases y recapitulación de las mismas.

Crisis de la física clásica y origen de la física cuántica. Radiación del cuerpo negro y la hipótesis cuántica.

CRISIS DE LA FISICA CLAISCA

 Finales del siglo XIX, los físicos llegaron a pensar que el edificio de las ciencias estaba prácticamente completo.
Sin embargo, en muy pocos años se realizaron varias experiencias que vinieron a demostrar lo contrario. Estos son los principales aspectos que hicieron que el edificio científico construido se derrumbara con gran estrépito:
·         Los espectros continuos de emisión
·         La teoría de la Relatividad
·         El efecto fotoeléctrico
·         El efecto Compton
·         El comportamiento dual de las ondas electromagnéticas

ORIGEN DE LA FISICA CUANTICA

Aunque se afirma que la física cuántica nació con el descubrimiento de Planck, en 1900, lo cierto es que su formulación se inició hasta 1925, con los trabajos de otro físico alemán, Werner Heisenberg. Es indudable que la mecánica cuántica, como casi todas las teorías científicas modernas, es una obra colectiva resultante de una gran variedad de esfuerzos personales realizados durante muchos años y en diversos lugares. Sin embargo, buscando los antecedentes determinantes de lo que ahora sabemos de ese campo, es imposible pasar por alto un artículo –fechado en 1925– en el que Heisenberg señaló la importancia de cambiar la formulación matemática de los fenómenos que ocurren en el mundo atómico.
A partir de 1926, el desarrollo de la mecánica cuántica fue espectacular. En ese año Erwin Schrödinger (físico austriaco) formuló la famosa ecuación que desde entonces lleva su nombre y con ella los físicos iniciaron la construcción del gran edificio que alberga ahora las explicaciones de los fenómenos atómicos y moleculares. Poco después se puso en limpio la estructura matemática de la teoría cuántica, especialmente por los trabajos del físico inglés Paul Adrien, Maurice Dirac y del matemático estadounidense, de origen húngaro, John von Neumman.

La física cuántica -también conocida como mecánica cuántica o mecánica ondulatoria- es la rama de la física que estudia el comportamiento de la energía y la materia cuando las dimensiones de ésta son inferiores a los 1.000 átomos.

El término ‘mecánica cuántica’ fue utilizado por primera vez por Max Born en 1924, aunque la primera formulación cuántica de un fenómeno se había dado a conocer anteriormente, el 14 de diciembre de 1900 en una sesión de la Sociedad Física de la Academia de Ciencias de Berlín. Su autor, Max Planck es considerado el padre de los fundamentos de la física cuántica.

En cualquier caso, la mecánica cuántica es la última y más moderna de las ramas de la física, ya que sus bases se concretaron a lo largo de la primera mitad del siglo XX, en respuesta a los problemas que no podían ser resueltos por medio de la física clásica.
En el desarrollo formal de la teoría tuvieron mucho que ver también otros físicos y matemáticos, entre quienes destacaron Einstein, Heisenberg, Schrödinger, Dirac y Von Neumann. Algunos de los aspectos fundamentales de la teoría de la física mecánica están siendo aún estudiados activamente.

RADIACION DEL CUERPO NEGRO

Todos los objetos emiten ondas electromagnéticas. Para entender por qué emiten radiación los objetos ponga mucha atención a las siguientes consideraciones:
·         Los objetos están hechos de átomos.
·         Un átomo puede emitir radiación (como la luz) cuando uno de sus electrones pierde energía y así pasa a un orbital de menor energía.
·         Un átomo puede absorber radiación cuando uno de sus electrones gana energía y así pasa a un orbital de mayor energía.
·         El movimiento de los átomos en un objeto produce choques o vibraciones que estimulan la emisión y absorción de radiación.
·         Un aumento en la temperatura de un objeto representa un aumento de la energía cinética de movimiento de sus átomos.
·         En la naturaleza ningún objeto puede tener temperatura absoluta igual a cero.

El físico alemán Max Plank, descubrió la ley que gobierna la radiación de los cuerpos en equilibrio termodinámico. Según Plank, la intensidad de radiación para cada longitud de onda depende únicamente de la temperatura del cuerpo en cuestión.
El espectro de radiación (o intensidad para cada longitud de onda) al que llegó Plank tiene una forma característica así:

Los físicos designan este espectro con el nombre de Radiación de Cuerpo Negro. Plank llegó a este resultado introduciendo el concepto de quantum de energía (es decir que la energía en la naturaleza sólo se puede intercambiar en paquetes con cantidades discretas). Este es el principio de la mecánica cuántica.

HIPOTESIS CUANTICA

La física de la época de Max Planck no permitía explicar los detalles de la radiación térmica (también llamada radiación de cuerpo negro). Planck tuvo que inventar una física nueva. Supuso que la radiación se emitía y absorbía en “paquetes”. Cada paquete contiene una cantidad fija de energía y no se puede subdividir. Planck llamó a los paquetes quantum (que quiere decir “qué tanto” en latín). Con la hipótesis de que la radiación venía en cuantos, Planck logró explicar la radiación térmica.

La hipótesis cuántica de Planck iba en contra de lo que se sabía acerca de la energía. Los físicos pensaban que ésta podía ir y venir entre los objetos como un flujo continuo (digamos, como un chorro de agua, que llena una cubeta continuamente). Planck cambió este flujo continuo por una ráfaga de paquetes discontinuos (como si la cubeta se llenara de piedras, o cubos de hielo). Al principio este razonamiento no le gustó ni a Planck. Pero la hipótesis cuántica ganó adeptos conforme fue explicando otros fenómenos que no se entendían con la física clásica.

SEMANA11
SESIÓN
31
Física 2
UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS (30 Horas)
contenido temático
6.1 Crisis de la física clásica y origen de la física cuántica.
Radiación del cuerpo negro y la hipótesis cuántica.

Aprendizajes esperados del grupo
Conceptuales
  • Indica fenómenos físicos que la física clásica no pudo explicar.
Procedimentales
·       Elaboración de indagaciones bibliográficas y resúmenes.
·       Presentación en equipo
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Presentación de la información recabada en la indagación bibliográfica.
De Laboratorio:
Piedra volcánica (cuerpo negro), lupa, termómetro, papel blanco, papel negro, tapón de hule blanco y negro,



Desarrollo del proceso
FASE DE APERTURA
El Profesor  hace la presentación de las preguntas:
Preguntas
¿En qué consiste la crisis de la Física Clásica?
¿Cuál es el origen de  la Física Moderna?
¿Qué experimentos participan en el origen de la Física moderna?
¿Cuál es el ´principio de la radiación del cuerpo negro?
¿Qué dicen la Ley de Stephan-Boltzman y Ley de Wien?
¿En que radica la hipótesis cuántica?
Equipo
3
6
4
1
2
5
Respuesta
La crisis ocurrió en el siglo xix por que se creía que la física ya estaba competa y que no faltaba nada por descubrir pero resulto que no era asi
La física moderna  comienza a principios del siglo XX, cuando el alemán Max Planck investiga sobre el “cuanto” de energía. Planck decía que eran partículas de energía indivisibles, y que éstas no eran continuas como decía la física clásica. Por ello nace esta nueva rama de la física, que estudia las manifestaciones que se producen en los átomos, los comportamientos de las partículas que forman la materia y las fuerzas que las rigen. Se conoce, generalmente, por estudiar los fenómenos que se producen a la velocidad de la luz o valores cercanos a ella, o cuyas escalas espaciales son del orden del tamaño del átomo o inferiores.
Se puede resolver el rompecabezas de los neutrinos solares. Se designa al Observatorio de Neutrinos Sudbury (SNO, por sus iniciales en inglés), en Ontario (Canadá), para resolver el problema de los neutrinos solares que surgió en 1967. Físicos nucleares y astrofísicos habían predicho el número de neutrinos producidos en la fusión solar que podrían llegar a la Tierra, pero los experimentos detectaron sólo un tercio de ellos. La solución del misterio puede requerir que los neutrinos tengan masa, y eviten ser detectados al cambiar sus características camino a la Tierra. El experimento ilustra la interdependencia de los reinos atómico y cósmico de una forma particularmente obligatoria y precisa.
2000-2010
Las ondas gravitacionales abren una nueva ventana al universo. Se cree que las ondas gravitacionales, aún no detectadas para el año 1999, se agitan a través del espacio-tiempo del universo. Se espera que un nuevo sistema de detección planificado para Louisiana (estado de Washington), y para otros sitios alrededor del mundo, las encuentre. El Observatorio de Ondas Gravitacionales Interferómetro Láser (Laser Interferometer Gravitational Wave Observatory [LIGO]) revelará el fenómeno cósmico de una forma jamás registrada por telescopios ópticos o de radio y entregará convincentes nuevas pruebas de las teorías de la relatividad y el Big Bang.
2000-2010
La fotónica compite con la electrónica. En principio, los fotones pueden transmitir, manipular y almacenar información de manera más eficiente que los electrones. Las fibras ópticas están comenzando a reemplazar los cables de cobre que han sido usados para la transmisión de datos por más de un siglo. De todos modos, el computador all-optical (“todo-óptico”), con circuitos fotónicos integrados, se encuentra aún en pañales. Cuando madure, serán posibles nuevas y revolucionarias formas de hacer "pensar" a las máquinas. 

Se refiere a un objeto o sistema, que absorbe toda la radiación incidente sobre él e irradia energía que caracteriza a este sistema radiante
La ley de desplazamiento de Wien:
la longitud de onda de la densidad de energía máxima (pico de emisión) es inversamente proporcional a su temperatura absoluta.
ley+wien
donde T es la temperatura del cuerpo negro en Kelvin (ºK) y  lmax es la longitud de onda del pico de emisión en metros.
La ley de Stefan-Boltzmann:
la energía emitida por un cuerpo negro por unidad de área y por unidad de tiempo (W/m2) es proporcional a la cuarta potencia de su temperatura absoluta T (K).


 Cuántica es uno de los pilares fundamentales de la Física actual. Se trata de una teoría que reúne un formalismo matemático y conceptual, y recoge un conjunto de nuevas ideas introducidas a lo largo del primer tercio del siglo XX, para dar explicación a procesos cuya comprensión se hallaba en conflicto con las concepciones físicas vigentes. 

FASE DE DESARROLLO
              Los alumnos desarrollan las actividades de acuerdo a las indicaciones del Profesor:
Solicitar el material requerido para realizar las actividades siguientes:
-          A) Medir durante tres minutos, la temperatura del hueco de una piedra volcánica, expuesta a la radiación solar.
-          B) Calienten tres minutos, el hueco de la piedra volcánica con la ayuda de una lupa- coincidir el foco de la radiación solar al centro del hueco de la piedra volcánica y medir su temperatura
-          C) Envolver con el papel blanco el bulbo del termómetro y colocarlo al sol durante tres minutos, medir la temperatura inicial y final.
-          D) repetir el paso C ahora con el papel negro.
-          Registrar y graficar  las temperaturas obtenidas en los cuatro casos.
-          OBSERVACIONES:
Equipo
Temperatura A oC
Inicial      Final
Temperatura B oC
Inicial      Final
Temperatura C oC
Inicial      Final
Temperatura D oC
Inicial      Final
1
25°C
30°C
30°C
40°C
29°C
34°C
29°C
40°C
2
22°C
18°C
18°C
48°C
26°C
26°C
22°C
35°C
3
22° C
19°C
18°C
50°C
26°C
28°C
22°C
36°C
4
23°
20°
19°
49°C
25°C
28°C
22°C
35°C
5
21°C
20°C
20°C
39°C
26°C
 29°C
22°C
48°C
6

22°
20°
22°
69° C
27°C
29°C
22°C
38°C



-          Cada alumno al terminar lo asignado, con los resultados obtenidos los tabula y grafica.
-           El Profesor solicita a cada equipo que de acuerdo al análisis de los resultados, elaboren  sus conclusiones.
El método permitirá a los alumnos, tener un panorama del  tema de cuerpo negro.
FASE DE CIERRE
    Al final de las presentaciones, se lleva a cabo una discusión extensa, en la clase, de lo  que se aprendió y aclaración de dudas por parte del Profesor.                     
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas de la siguiente sesión, de acuerdo al cronograma.
 Se les sugiere que abran una carpeta  nombrada Física 2;  en la cual almacenaran su información, se les solicitara que los equipos formados, se comuniquen vía e-mail u otro  programa para comentar y analizar los resultados, para presentarla al Profesor en la siguiente clase en USB.
               Los alumnos que tengan PC y Programas elaboraran su informe, empleando el                   programa  Word, para registrar los resultados.
Evaluación
Informe en Power Point de la actividad.
    Contenido:
    Resumen de la Actividad.



Cuantización de la energía y efecto fotoeléctrico

La experiencia que realizaron Franck y Hertz en 1914 es uno de los experimentos claves que ayudaron a establecer la teoría atómica moderna. Nos muestra que los átomos absorben energía en pequeñas porciones o cuantos de energía, confirmando los postulados de Bohr.

La emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica. Sus características esenciales son:

Para cada sustancia hay una frecuencia mínima o umbral de la radiación electromagnética por debajo de la cual no se producen fotoelectrones por más intensa que sea la radiación.
La emisión electrónica aumenta cuando se incrementa la intensidad de la radiación que incide sobre la superficie del metal, ya que hay más energía disponible para liberar electrones.

En los metales hay electrones que se mueven más o menos libremente a través de la red cristalina, estos electrones no escapan del metal a temperaturas normales porque no tienen energía suficiente. Calentando el metal es una manera de aumentar su energía. Los electrones "evaporados" se denominan termo electrones, este es el tipo de emisión que hay en las válvulas electrónicas. También se pueden liberar electrones (fotoelectrones) mediante la absorción por el metal de la energía de radiación electromagnética.

El efecto fotoeléctrico, descubierto por Hertz en 1887, demuestra que la energía luminosa transportada por las radiaciones que inciden en el metal se transforma en energía mecánica. Parte de esa energía mecánica se emplea en arrancar los electrones de la superficie del metal y parte se transforma en energía cinética de los electrones que salen expulsados con una velocidad (v).

La teoría ondulatoria de la luz no explica suficientemente el efecto fotoeléctrico ya que según esta teoría, la energía luminosa transportada por una radiación. Sin embargo, hemos dicho antes, que el umbral fotoeléctrico de pende de la frecuencia de la radiación excitatriz, y la mayor o menor iluminación del metal influye en el número de electrones impulsados, pero no en la velocidad que adquieren.

De aquí que se buscara una explicación del fenómeno fotoeléctrico partiendo de la teoría de los quanta por el físico Alemán Marx Planck (1858 - 1947) en el año 1900. Según esta teoría la energía transportada por una radiación de frecuencia (f) es siempre un múltiplo entero del producto (h x f) donde (h) representa una constante universal que vale, en el S.I., h = 6,62 x 10 -34 Joules.s.

El, producto (h x F) constituye el cuanto de energía, es decir, la menor cantidad de energía que se puede obtener en una radiación de frecuencia (f): es como un átomo o grado de energía. Esto llevo a Einstein a replantear nuevamente la teoría corpuscular de la luz debido a Newton, diciendo que la luz consta de pequeños cuantos o gramos de energía, a los que llamó fotones.

Cada fotón de una radiación (luminosa) de frecuencia (f) transporta una energía.
E = h x f
Siendo:
E: Energía del fotón
h: Constante universal, llamada constante de Planck; su valor es 6,63x10 -34 joule.s
f: Frecuencia de la radiación.
Observamos que según ésta ecuación:

·         La energía radiante, tal como la luz, se propaga en paquetes de energía, cuyos tamaños son proporcionales a la frecuencia de la radiación.

·         La energía ha de ser absorbida o emitida por cuantos completos, no siendo admisibles fracciones del cuánto.

En definitiva la energía, igual que la materia, presenta una estructura discontinua. A partir de la teoría de Planck, todas las energías están permitidas, sino sólo aquellas que sean múltiples de (h).

La hipótesis de Planck ha sido confirmada y es una de la más fructíferas de toda la Física; la cual fue presentada en un Congreso de Berlín. Esta hipótesis, se basó en las radiaciones emitidas por cualquier fotón luminoso, indicando que no son un flujo continuo de ondas luminosas, sino una corriente de fotones individuales.

El Fotón lo podemos definir así:
Un fotón es la unidad de radiación electromagnética con una longitud de onda y una frecuencia determinada, que posee una cierta cantidad de energía llamada “cuanto de energía”.
Espectros de emisión y absorción de gases

Cuando un elemento irradia energía no lo hace en todas las longitudes de onda. Solamente en aquellas de las que está “provisto”. Esas longitudes de onda sirven para caracterizar, por tanto, a cada elemento. También ocurre que cuando un elemento recibe energía no absorbe todas las longitudes de onda, sino solo aquellas de las que es capaz de “proveerse”. Coinciden por tanto, las bandas del espectro en las que emite radiación con los huecos o líneas negras del espectro de absorción de la radiación, como si un espectro fuera el negativo del otro.

Los espectros de emisión:

Todos los cuerpos emiten energía a ciertas temperaturas. El espectro de la radiación energética emitida es su espectro de emisión. Todos los cuerpos no tienen el mismo espectro de emisión. Esto es, hay cuerpos que emiten en el infrarrojo, por ejemplo, y otros cuerpos no.

En realidad, cada uno de los elementos químicos tiene su propio espectro de emisión. Y esto sirve para identificarlo y conocer de su existencia en objetos lejanos, inaccesibles para nosotros, como son las estrellas.

Así, el sodio tiene su característico espectro de emisión, lo mismo que el calcio, o que el hidrógeno, etc.

Un gas caliente y transparente emite líneas espectrales de colores brillantes contra un fondo de líneas oscuro. Esas líneas oscuras, en el espectro de un gas en particular, se dan exactamente en las mismas longitudes de onda que las líneas oscuras en el espectro de absorción de un gas que tenga la misma composición química.

Los espectros de absorción:

Y también los cuerpos absorben radiación emitida desde otros cuerpos, eliminando del espectro de radiación que reciben aquellas bandas absorbidas, que quedan de color negro. Son lo que se llaman “rayas negras” o simplemente “rayas” del espectro.

También ocurre con la absorción, que unos cuerpos absorben la radiación de unas determinadas longitudes de onda y no absorben la radiación de otras longitudes de onda, por lo que cada cuerpo, cada elemento químico en realidad, tiene su propio espectro de absorción, correspondiéndose con su espectro de emisión, cual si fuera el negativo con el positivo de una película.

Un liviano, transparente y caliente gas en frente de una fuente productora de radiaciones espectrales, especialmente de características continuas, genera un espectro de absorción, el cual se distingue por una serie de líneas espectrales oscuras entre los colores brillantes del espectro continuo. En el gráfico de la figura se grafica la intensidad lumínica versus la longitud de onda (visuales) contrastada con las líneas espectrales sustraídas del resto de la luz.

SEMANA11
SESIÓN
32
Física 2
UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS
contenido temático
6.2 Cuantización de la energía y efecto fotoeléctrico.
6.3 Espectros de emisión y absorción de gases.

Aprendizajes esperados del grupo
Conceptuales
  • Describe el efecto fotoeléctrico
  • Describe algunos espectros de emisión y absorción.
Procedimentales
·       Elaboración de actividades de laboratorio.
·       Presentación en equipo
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Presentación en Power Point; examen diagnóstico, programa del curso.
De Laboratorio:
Tubos de descarga, Hidrogeno, Helio, Nitrógeno, Oxigeno, Neón, Argón, Kriptón, fuente de poder, espectroscopio o lentes de difracción.



Desarrollo del proceso

FASE DE APERTURA
-          El Profesor  hace la presentación de las preguntas:
Preguntas
¿En qué consiste la cuantización de la energía?
¿En qué consiste el efecto fotoeléctrico?
¿Cuáles son las aplicaciones del efecto fotoeléctrico?
¿Qué son los espectros de emisión?
¿Qué son los espectros de  absorción?
¿Cuáles son las aplicaciones de los espectros de emisión y absorción?
Equipo
2
6
1
3
5
4
Respuesta
Nos muestra que los átomos absorben energía en pequeñas porciones o cuantos de energía, confirmando los postulados de Bohr. 
Es el fenómeno en el que las partículas de luz llamadas fotón, impactan con los electrones de un metal arrancando sus átomos. El electrón se mueve durante el proceso, dado origen a una corriente eléctrica. Este fenómeno es aprovechado en las plantas que utilizan paneles solares, los cuales reciben la energía lumínica del sol transform-ándola en electricidad.
Este efecto tiene varias aplicaciones prácticas, como lo es en celdas fotoeléctricas o ojos eléctricos que sirve para mantener las puertas abiertas, en alarmas antirrobos, para el encendido de las lámparas públicas (al oscurecer) para la reproducción del sonido en cintas fílmicas, etc.
Son las frecuencias que emite un material al ser iluminado por una luz haciendo saltar los electrones entre los niveles y libera un fotón en esa frecuencia
La espectrometría de absorción se refiere a una variedad de técnicas que emplean la interacción de la radiación electromagnética con la materia. En la espectrometría de absorción, se compara la intensidad de un haz de luz medida antes y después de la interacción con una muestra.
 Ejemplos de estas aplicaciones son muy variados.
Identificar moléculas, iones, o elementos en un compuesto o solución dado, pues cada molécula, ion o elemento tiene un espectro de emisión y otro de absorción únicos.
Determinar la concentración de moléculas, iones o elementos en una solución, ya que por medio de la ley de Beer se determina la concentración a partir de la cantidad de radiación emitida o absorbida al incidirle energía.


-          Se realiza una discusión en el grupo, mediada por el Profesor para consensar las respuestas.
FASE DE DESARROLLO
              Los alumnos desarrollan las actividades de acuerdo a las indicaciones del Profesor
-          Solicitar el material requerido para realizar las actividades siguientes:
-          Colocar cada uno de los tubos de descarga en la fuente de poder.
-          Conectar la fuente de poder a la corriente eléctrica y oprimir el botón de encendido de la misma.
-          Observar el color generado por cada uno de los tubos de descarga y completa la tabla de observaciones.
-          Observar con el espectroscopio la luz solar y escribir los colores detectados.
Elemento en el tubo de descarga
Nombre y símbolo
Numero de electrones
Modelo Atómico
Según Bohr
Color  emitido al aplicar energía con la fuente de poder
Colores de la luz solar
Neón
10
Ne%C3%B3n+2
Rojo
amarillo
          Argón
18
Arg%C3%B3n+2
Violeta
Amarillo-anaranjado
Vapor de agua
10
Pickz~Motho_1680
Degradación del color moradoso
Amarillo
4.-  Helio
2
helio-4++2
Naranja radiante
amarillo
6.Hidrógeno
1
atombohr.jpg (5811 bytes)
Morado tenue
Amarillo y naranja

El Profesor solicita a cada equipo que de acuerdo a  los resultados obtenidos, comparen los colores emitidos por el Sol y vistos con el espectroscopio
Los alumnos discuten y obtiene conclusiones.
 FASE DE CIERRE
    Al final de las presentaciones, se lleva a cabo una discusión extensa, en la clase, de lo  que se aprendió y aclaración de dudas por parte del Profesor.                    
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas de la siguiente sesión, de acuerdo al cronograma.
 Se les sugiere que abran una carpeta  nombrada Física 2;  en la cual almacenaran su información, se les solicitara que los equipos formados, se comuniquen vía e-mail u otro  programa para comentar y analizar los resultados, para presentarla al Profesor en la siguiente clase en USB.
               Los alumnos que tengan PC y Programas elaboraran su informe, empleando el                   programa  Word, para registrar los resultados.
Evaluación
Informe en Power Point de la actividad.
    Contenido:
    Resumen de la Actividad.

EL 27 DE ESA SEMANA PRESENTAMOS EL TRABAJO DE INVESTIGACIÓN EN EQUIPO.






SEMANA 11
24, 26. 03. 2015

http://www.astrocosmo.cl/b_p-tiempo/b_p-tiempo-02.02.htm

No hay comentarios.:

Publicar un comentario