domingo, 1 de marzo de 2015

Interacción electromagnética, Interacción electromagnética entre conductores, Atracción o repulsión entre conductores con corriente y la recapitulación de estos mismos.



Interacción electromagnética

Es la interacción que ocurre entre las partículas con carga eléctrica. Desde un punto de vista macroscópico y fijado un observador, suele separarse en dos tipos de interacción, la interacción electrostática, que actúa sobre cuerpos cargados en reposo respecto al observador, y la interacción magnética, que actúa solamente sobre cargas en movimiento respecto al observador.

Las partículas fundamentales interactúan electromagnéticamente mediante el intercambio de fotones entre partículas cargadas. La electrodinámica cuántica proporciona la descripción cuántica de esta interacción, que puede ser unificada con la interacción nuclear débil según el modelo electro débil. 

El origen de la interacción eléctrica son las cargas eléctricas. Los aspectos más importantes son:

1) Existen dos tipos de interacción, atractiva y repulsiva, debido a que existen dos tipos de cargas eléctricas, positivas y negativas.

2) La interacción atractiva se produce entre las cargas de distinto tipo y la interacción repulsiva entre las cargas del mismo tipo.

3) Las cargas eléctricas son de naturaleza escalar y aditivas. En cuanto a la cuantificación de la carga eléctrica, se ha observado en la naturaleza, que son múltiplos de la carga elemental que es la carga del electrón, de valor -1,6·10-19 C. La conservación de la carga es un principio a considerar, ya que la carga eléctrica se puede mover a través de un objeto, pasar de un objeto a otro pero no se destruye.

Charles Augusto Coulomb (1736-1806) realizó una serie de experimentos para determinar la interacción entre dos cargas puntuales y llegó a la siguiente expresión, conocida como Ley de Coulomb: “La interacción eléctrica entre dos partículas cargadas, en reposo o en movimiento relativo muy lento, es directamente proporcional al producto del valor de sus cargas e inversamente proporcional al cuadrado de la distancia que las separa, y su dirección es a lo largo de la línea que une las dos cargas. La interacción depende siempre del medio”.

SEMANA7
SESIÓN
19
Física 2
UNIDAD 5: FENÓMENOS ELECTROMAGNÉTICOS
contenido temático
5.13 Interacción electromagnética.



Aprendizajes esperados del grupo
Conceptuales
  • Representa con dibujos o diagramas el campo magnético producido por dipolos magnéticos: imán, espira y bobina.
Procedimentales
·       Realiza actividades experimentales.
·       Presentación en equipo
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Presentación de la información recabada en la indagación bibliográfica.
-          De laboratorio:
Batería de 9 volts, alambre magneto, brújula,  limadura de hierro



Desarrollo del proceso
FASE DE APERTURA
                    El Profesor  hace la presentación de las pregunta:

Preguntas
¿Quién descubrió la relación entre un campo magnético y uno eléctrico?

¿Cómo son las líneas de fuerza en un campo magnético de un conductor con corriente eléctrica?

¿Cuál es la regla que determina el sentido de las líneas de fuerza en un conductor recto?

¿Qué es un solenoide?

¿Cómo es el esquema de un campo magnético de una corriente circular?

¿Cómo es el esquema del campo magnético de la corriente rectilínea en un plano perpendicular al conductor?
Equipo
1
5
3
2
6
4
Respuesta
Hans Christian Ørsted
Estas líneas tienen directa incidencia sobre sus propios polos o sobre cualquier elemento ubicado dentro de dicho campo, de la siguiente manera: 

Distribución de campo magnético
Las líneas de fuerza son cerradas y se distribuyen de "norte a sur" por fuera del imán.
Las líneas de fuerza son cerradas y se distribuyen de "norte a sur" por dentro del imán
Todas las líneas de fuerza constituyen el flujo magnético.
Se llama regla de pulgar de la mano derecha.
 Y sirve para saber la dirección de los vectores en un conductor recto
Un solenoide es cualquier dispositivo físico capaz de crear un campo magnético sumamente uniforme e intenso en su interior, y muy débil en el exterior. Un ejemplo teórico es el de una bobina de hilo conductor aislado y enrollado helicoidalmente, de longitud infinita. En ese caso ideal el campo magnético sería uniforme en su interior y, como consecuencia, afuera sería nulo.



Los alumnos en equipo, discuten y escriben sus respuestas en el cuadro, utilizando el procesador de palabras:
-          Se realiza una discusión en el grupo, mediada por el Profesor para consensar las respuestas.
FASE DE DESARROLLO
              Los alumnos desarrollan las actividades de acuerdo a las indicaciones del Profesor:
-          Solicitar el material requerido para realizar las actividades siguientes:
Apliquen la energía de un imán bajo la hoja de papel y sobre el papel las limaduras de hierro y dibujen las líneas del campo magnético:


-          Observen la influencia del campo magnético sobre las limaduras de hierro y una brújula:


Campos  y  líneas  de fuerzas  magnéticas
Equipo
1
2
3
4
5
6
Distancia de atracción de aguja
32 cm
13.1 cm
14.5 cm
12cm

23.5 cm
Distancia de repulsión de aguja
30 cm
17.6 cm
30 cm
16cm

23 cm

Material: imán, limadura de hierro, cartulina u hoja de papel, brújula.
Líneas de fuerza de un imán visualizadas mediante limaduras de hierro extendidas sobre una cartulina.   
Experimento I
   
-Colocamos limaduras de hierro en la superficie de la cartulina u hoja de papel y acercamos un imán permanente por la parte inferior podremos visualizar las líneas de fuerza magnética que van de un polo al otro curvándose y rodeando al imán. Se denomina campo magnético al área cubierta por estas líneas.
-
Experimento II
-       
Las cargas en movimiento producen un campo magnético.
Es decir que no sólo los imanes permanentes son capaces de generar un campo magnético. La manera más sencilla de poner a los electrones en movimiento es hacerlos circular por un alambre conductor (por ejemplo con ayuda de una pila o una batería). El campo magnético que se genere en un punto dado del espacio dependerá básicamente de la corriente eléctrica que circule por el alambre y de la distancia entre el alambre y ese punto. Si se aplica un campo magnético sobre  una partícula cargada en movimiento (o sobre una corriente eléctrica) se producirá una fuerza que tenderá a desviarla de su trayectoria. Esta fuerza se la conoce como Fuerza de Lorentz y es perpendicular tanto a la dirección del campo como a la de movimiento de la partícula.
   
Experimento III
   
El fenómeno del magnetismo terrestre se debe a que toda la Tierra se comporta como un gigantesco imán. Aunque no fue hasta 1600 que se señaló esta similitud, los efectos del magnetismo terrestre se habían utilizado mucho antes en las brújulas primitivas. El nombre dado a los polos de un imán (Norte y Sur) se debe a esta similitud.
Un hecho a destacar es que los polos magnéticos de la Tierra no coinciden con los polos geográficos de su eje. Las posiciones de los polos magnéticos no son constantes y muestran ligeros cambios de un año para otro, e incluso existe una pequeñísima variación diurna sólo detectable con instrumentos especiales. Notar que si la aguja de la brújula marcada con N apunta al Norte, esto indica que el polo Norte geográfico coincide con el polo Sur magnético de la tierra.
El valor del campo magnético terrestre depende de la posición en la que se lo mida, pero suele ser del orden de 0.5 Oersted (Oe - unidad de campo magnético)
         Solicitar el material requerido para realizar las actividades siguientes:
Apliquen la energía de un imán bajo la hoja de papel y sobre el papel las limaduras de hierro y dibujen las líneas del campo magnético:
Observen la influencia del campo magnético sobre las limaduras de hierro y una brújula
Observaciones:
-          Los alumnos discuten y obtiene conclusiones:
FASE DE CIERRE
Al final de las presentaciones, se lleva a cabo una discusión extensa, en la clase, de lo  que se aprendió y aclaración de dudas por parte del Profesor.                    
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas de la siguiente sesión, de acuerdo al cronograma .
 Se les sugiere que presenten en su Blog  nombrado Física 2;  en la cual almacenaran su información, se les solicitara que los equipos formados, se comuniquen vía e-mail u otro  programa para comentar y analizar los resultados, para presentarla al Profesor en la siguiente clase en USB.
Los alumnos que tengan PC y Programas elaboraran su informe, empleando el  programa  Word, para registrar los resultados
-          Conectar un alambre de cobre a los bornes de una batería de 9 volts y acercarla a una brújula.

      
Fuerza magnética sobre un conductor rectilíneo
http://www.sc.ehu.es/sbweb/fisica/elecmagnet/campo_magnetico/varilla/varilla.htm
FASE DE CIERRE
    Al final de las presentaciones, se lleva a cabo una discusión extensa, en la clase, de lo  que se aprendió y aclaración de dudas por parte del Profesor.                    
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas de la siguiente sesión, de acuerdo al cronograma .
 Se les sugiere que abran una carpeta  nombrada Física 2;  en la cual almacenaran su información, se les solicitara que los equipos formados, se comuniquen vía e-mail u otro  programa para comentar y analizar los resultados, para presentarla al Profesor en la siguiente clase en USB.
               Los alumnos que tengan PC y Programas elaboraran su informe, empleando el                   programa  Word, para registrar los resultados.
Evaluación
Informe en Power Point de la actividad.
    Contenido: Resumen de la Actividad.
Referencias
Fuerza magnética sobre un conductor rectilíneo
http://www.sc.ehu.es/sbweb/fisica/elecmagnet/campo_magnetico/varilla/varilla.htm

Interacción electromagnética entre conductores y atracción o repulsión entre conductores con corriente.

Un conductor es un hilo o alambre por el cual circula una corriente eléctrica. Una corriente eléctrica es un conjunto de cargas eléctricas en movimiento. Ya que un campo magnético ejerce una fuerza lateral sobre una carga en movimiento, es de esperar que la resultante de las fuerza sobre cada carga resulte en una fuerza lateral sobre un alambre por el que circula una corriente eléctrica.

La experimentación con conductores dispuestos paralelamente pone de manifiesto que éstos se atraen cuando las corrientes respectivas tienen el mismo sentido y se repelen cuando sus sentidos de circulación son opuestos. Además, esta fuerza magnética entre corrientes paralelas es directamente proporcional a la longitud del conductor y al producto de las intensidades de corriente e inversamente proporcional a la distancia r que las separa, dependiendo además de las características del medio.

SEMANA7
SESIÓN
20
Física 2
UNIDAD 5: FENÓMENOS ELECTROMAGNÉTICOS
contenido temático
5.14 Interacción electromagnética  entre conductores  rectilíneos.
5.15 Atracción o repulsión entre conductores con corriente.



Aprendizajes esperados del grupo
Conceptuales
  • Describe la fuerza de atracción o de repulsión que se observa entre dos conductores con corriente eléctrica constante, y establece la dependencia de la fuerza de interacción magnética entre los conductores con su separación.
Procedimentales
·       Elaboración de indagaciones bibliográficas.
·       Presentación en equipo
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Indagaciones bibliográficas de los temas.
-          De laboratorio:
-          Baterías de 9 volts, alambre magneto, regla de madera 30 cm.



Desarrollo del proceso
FASE DE APERTURA
                El Profesor  hace la presentación de las pregunta:
Preguntas
¿Qué ocurre a un conductor rectilíneo al pasar corriente eléctrica?

¿En electromagnetismo en qué consiste la Ley del pulgar derecho?

¿Qué les ocurre a dos conductores rectilíneos al pasar corriente eléctrica en el mismo sentido?

¿Qué les ocurre a dos conductores rectilíneos al pasar corriente eléctrica en diferente sentido?

¿En qué consiste la Ley Ampere?

¿Cómo se define la Ley de Gauss?
Equipo
3
1
4
6
5
2
Respuesta
Una corriente que circula por un conductor genera un campo magnético alrededor del mismo.
Se emplea en dos maneras: para direcciones y movimientos vectoriales lineales  y para movimientos y direcciones rotacionales.
En electromagnetismo, la regla de la mano derecha establece que si se extiende la mano derecha sobre el conductor en forma de que los dedos estirados sigan la dirección de la corriente, el pulgar en ángulo recto con los demás dedos indicará el sentido de desplazamiento del polo norte de una aguja imantada.
El campo creado por la corriente eléctrica a través de un conductor recto como todo campo magnético, está integrado por líneas que se disponen en forma de circunferencias concéntricas dispuestas en planos perpendiculares al conductor.
Cuando las corrientes circulan en el mismo sentido, la fuerza es repulsiva
Dos corrientes rectilíneas indefinidas, paralelas, separadas una distancia d, que circulan en sentido contrario, se repelen.
Es la ley que nos permite calcular campos magnéticos a partir de las corrientes eléctricas.
Descripción: ampere_eq
La integral del primer miembro es la circulación o integral de línea del campo magnético a lo largo de una trayectoria cerrada, y:
μ0 es la permeabilidad del vacío
dl es un vector tangente a la trayectoria elegida en cada punto
IT es la corriente neta atraviesa la superficie delimitada superficie.

En física la ley de Gauss, también conocida como teorema de Gauss, establece que el flujo de ciertos campos a través de una superficie cerrada es proporcional a la magnitud de las fuentes de dicho campo que hay en el interior de dicha superficie. Dichos campos son aquellos cuya intensidad decrece como la distancia a la fuente al cuadrado. La constante de proporcionalidad depende del sistema de unidades empleado.

Los alumnos en equipo, discuten y escriben sus respuestas en el cuadro, utilizando el procesador de palabras:
-          Se realiza una discusión en el grupo, mediada por el Profesor para consensar las respuestas.
FASE DE DESARROLLO
              Los alumnos desarrollan las actividades de acuerdo a las indicaciones del Profesor:
Motor eléctrico
-          Solicitar el material requerido para realizar las actividades siguientes:
-          Cortar  10 cm de alambre magneto y alinear el alambre  cada tramo.
-          Quitar el barniz  al extremo de cada alambre y conectar a los polos de la batería.
-          Acercar las secciones rectas de los alambres  y medir las distancias de atracción o repulsión de los alambres.
-          Tabular y graficar los datos.
Escribir los cambios observados.
-          En equipo  los alumnos discuten y obtiene conclusiones.
-          Consultar la página:
-          http://www.sc.ehu.es/sbweb/fisica/elecmagnet/campo_magnetico/varilla/varilla.htm
FASE DE CIERRE
    Al final de las presentaciones, se lleva a cabo una discusión extensa, en la clase, de lo  que se aprendió y aclaración de dudas por parte del Profesor.                    
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas de la siguiente sesión, de acuerdo al cronograma .
 Se les sugiere que abran una carpeta  nombrada Física 2;  en la cual almacenaran su información, se les solicitara que los equipos formados, se comuniquen vía e-mail u otro  programa para comentar y analizar los resultados, para presentarla al Profesor en la siguiente clase en USB.
               Los alumnos que tengan PC y Programas elaboraran su informe, empleando el                   programa  Word, para registrar los resultados.
Evaluación
Informe en Power Point de la actividad.
    Contenido:
    Resumen de la Actividad.



Y la recapitulación de estos mismos…

SEMANA7
SESIÓN
21
Física 2
UNIDAD 5: FENÓMENOS ELECTROMAGNÉTICOS
contenido temático
RECAPITULACION 7



Aprendizajes esperados del grupo
Conceptuales
·         Comprenderá las características de  la inducción electromagnética
Procedimentales
·       Elaboración de resúmenes y de conclusiones.
·       Presentación en equipo
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Presentación de la información de las dos sesiones anteriores.



Desarrollo del proceso
FASE DE APERTURA 
- Cada equipo realizara una autoevaluación de los temas aprendidos en las dos sesiones anteriores.
1. ¿Qué temas se abordaron?
2.  ¿Que aprendí?
 3. ¿Qué dudas tengo?
Equipo
1
2
3
4
5
6
Respuesta
1. Interaccion electromagnética y entre conductores; Atracción o repulsión entre conductores con corriente.
2. que un conductor es por el cual circula una corriente eléctrica  y que cada uno de los conductores
Es tendrá su campo magnético, es decir, la atracción y la repulsión, y que para hacer un motor se necesita alambre, pila, imán y un conductor.
3. Ninguna
1.- Interacción electromagnética, interacción electromagnética entre conductores y atracción y repulsión entre conductores.
2.- Aprendimos que un conductor es un material por el que pasa corriente eléctrica, que la interacción electromagnética es la que ocurre entre partículas con cargas eléctricas y que la corriente eléctrica es un conjunto de cargas en movimiento.
3.- Ninguna.
1.- interacción electromagnética, interacción electromagnética entre conductores y atracción y repulsión entre conductores con corrientes.
2.- aprendimos que es la interacción electromagnética, como funciona la interacción entre conductores y como se atraen y repelen entre sí.
3.- ninguna
1) Interacción electromagnética, interacción electromagnética entre conductores, y atracción entre conductores e corriente.
2) Aprendimos que la interacción electromagnética es la que ocurre entre cargas eléctricas y la interacción magnética entre conductores; un conductor es un material por el cual circula la corriente y la corriente eléctrica es un conjunto de cargas en movimiento y en la atracción o repulsión entre conductores de corriente.
3) Ninguna.
1.
Interacción electromagnética.
Interacción electromagnética entre conductores
Atracción o repulsión entre conductores con corrientes.

2.
El campo magnético de un conductor se determina por la intensidad y el sentido d4 la corriente así como por la forma de dicho conductor.
3.
Ninguna.









FASE DE DESARROLLO
- Les solicita que un alumno de cada equipo  lea el resumen elaborado.
- El Profesor pregunta acerca de las dudas que tengan acerca de los temas vistos en las dos sesiones anteriores, características de  la inducción electromagnética.
FASE DE CIERRE 
El Profesor concluye con un repaso de la importancia de los Fenómenos electromagnéticos.
Revisa el trabajo a cada alumno y lo registra en la lista.
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas siguientes de acuerdo al cronograma, solicitándoles que incluyan fotos de los experimentos en el Blog que contendrá su información, asimismo se les solicitara que los equipos formados, se comuniquen vía e-mail u otro  programa para comentar y analizar los resultados para presentarla al Profesor en la siguiente clase.
Los alumnos que tengan PC y Programas elaboraran su informe, empleando el programa  Word, para registrar los resultados. 
Evaluación
Informe en Power Point de la actividad.
    Contenido:
    Resumen de la Actividad.

Física 2 trabajo de investigación en equipo
Introducción
El propósito de esta actividad es que los alumnos mediante el uso de las TIC, identifiquen la importancia que  tiene la Física  Contemporánea, por su impacto en la tecnología y en la sociedad actual.
1.- Cada equipo seleccionara un tema a investigar.
TEMA
FISICA NUCLEAR
RADIOSOTOPOS
FISICA SOLAR
LASERES
FIBRAS OPTICAS
COSMOLOGIA
EQUIPO
Desarrollo:
Los integrantes cada  equipo investigarán en la red el tema seleccionado, de acuerdo al siguiente índice centrarán su atención en la parte del mismo.
Índice:
1.- Antecedente histórico
2.- Fundamentos Físicos que intervienen
3.- Un experimento o maqueta que ilustre el tema seleccionado.
4.- Usos o aplicaciones Tecnológicas
5.- Medidas de seguridad
6.- Describir la actividad de cada integrante del equipo.
7.- Bibliografía consultada (páginas de la Red, libros, enciclopedias, etc.)
 Instrucciones:
c.- Definirán todos los conceptos del contenido temático buscando la información en la red y en los libros recomendados, entre otros.
d.- Cada equipo elaborará una lista de los puntos  más relevantes  del  tema seleccionado.
g.- Los integrantes de cada equipo se comunicarán mediante un blog o foro, o correo electrónico para intercambiar ideas o información de la temática correspondiente.
Cierre: Presentación de cada equipo de los resultados obtenidos 1 sesión en cómputo (2 horas)
f.- Cada equipo entregará su trabajo, organizado y editado convenientemente en Word y una síntesis en Power Point de acuerdo al índice, empleando la PC (PARA PRESENTARLO  AL GRUPO),  en un disco compacto, o memoria portátil, para subirlo al BLOG Física 2. Fecha de entrega:   Marzo 28del 2015                                           
 Bibliografía:
  1. fisica2005.unam.mx/index. 28-02-2010 2 www.atmosfera.unam.mx    28-02-2010
  3. www.nucleares.unam.mx/.  28-02-2010 4.www.bibliotecadigital.ilce.edu.mx/28-02-2010
  5.www.cienciorama.unam.mx/index28-02-2010 6.www.astrosmo.unam.mx 28-02-2010




SEMANA 7
24, 26 y 27.02.2015
Bibliografía

1 comentario:

  1. Casino in Maricopa - Mapyro
    This 시흥 출장샵 hotel is 5.6 mi (6.1 km) from The Waterpark and 천안 출장안마 4.7 mi (10 춘천 출장마사지 km) from The Pool at Borgata Hotel Casino & Spa. It 하남 출장안마 is owned 강릉 출장마사지 and operated by

    ResponderBorrar