sábado, 2 de mayo de 2015

Física nuclear, Radioisótopos y Física Solar.

Física Nuclear

La física nuclear es una rama de la física que estudia las propiedades y el comportamiento de los núcleos atómicos. La física nuclear es conocida mayoritariamente por la sociedad por el aprovechamiento de la energía nuclear en centrales nucleares y en el desarrollo de armas nucleares, tanto de fisión como de fusión nuclear. En un contexto más amplio, se define la física nuclear y de partículas como la rama de la física que estudia la estructura fundamental de la materia y las interacciones entre las partículas subatómicas.
Primeros experimentos

La radiactividad fue descubierta en las sales de uranio por el físico francés Henri Becquerel en 1896.

En 1898, los científicos Marie y Pierre Curie descubrieron dos elementos radiactivos existentes en la naturaleza, el polonio (84Po) y el radio (88Ra).
En 1913 Niels Bohr publica su modelo de átomo, consistente en un núcleo central compuesto por partículas que concentran la práctica mayoría de la masa del átomo (neutrones y protones), rodeado por varias capas de partículas cargadas casi sin masa (electrones). Mientras que el tamaño del átomo resulta ser del orden del angstrom (10-10 m), el núcleo puede medirse en fermis (10-15 m), o sea, el núcleo es 100.000 veces menor que el átomo.

Ernest Rutherford en el año 1918 definió la existencia de los núcleos de hidrógeno. Rutherford sugirió que el núcleo de hidrógeno, cuyo número atómico se sabía que era 1, debía ser una partícula fundamental. Se adoptó para esta nueva partícula el nombre de protón sugerido en 1886 por Goldstein para definir ciertas partículas que aparecían en los tubos catódicos.

Durante la década de 1930, Irène y Jean Frédéric Joliot-Curie obtuvieron los primeros nucleídos radiactivos artificiales bombardeando boro (5B) y aluminio (13Al) con partículas α para formar isótopos radiactivos de nitrógeno (7N) y fósforo (15P). Algunos isótopos de estos elementos presentes en la naturaleza son estables. Los isótopos inestables se encuentran en proporciones muy bajas.

En 1932 James Chadwick realizó una serie de experimentos con una radiactividad especial que definió en términos de corpúsculos, o partículas que formaban esa radiación. Esta nueva radiación no tenía carga eléctrica y poseía una masa casi idéntica a la del protón. Inicialmente se postuló que fuera resultado de la unión de un proton y un electrón formando una especie de dipolo eléctrico. Posteriores experimentos descartaron esta idea llegando a la conclusión de que era una nueva partícula procedente del núcleo a la que se llamó neutrones.

Los científicos alemanes Otto Hahn y Fritz Strassmann descubrieron la fisión nuclear en 1938. Cuando se irradia uranio con neutrones, algunos núcleos se dividen en dos núcleos con números atómicos. La fisión libera una cantidad enorme de energía y se utiliza en armas y reactores de fisión nuclear.

Núcleo

 Número atómico Z.- Es el número de protones que componen el núcleo del átomo. Así, el Hidrógeno (símbolo H), que es el átomo utilizado en la fusión nuclear, tiene un número Z=1, pues solamente dispone de un protón en su núcleo. De hecho, el hidrógeno es el elemento químico más sencillo -y a la vez más abundante en la naturaleza-.

- Masa atómica A. Es la suma de protones y neutrones. También se llama número másico. Considerando N al número de neutrones de un átomo, tenemos que A=Z+N.

- Peso atómico. Es el peso del átomo, tomando como unidad la duodécima parte del peso del átomo de Carbono (C). Así, el Hidrógeno pesa aproximadamente 1 y el Carbono 12.

Fuerzas nucleares

Los protones y neutrones del núcleo se encuentran en un espacio muy reducido, a distancias muy cortas unos de otros. A estas distancias tan cortas es muy grande la repulsión electromagnética entre protones, que de acuerdo a la ley de Coulomb es inversamente proporcional al cuadrado de la distancia y directamente proporcional a la magnitud de las cargas. La fuerza que vence a esta repulsión electromagnética y es capaz de mantener el núcleo unido es otra de las 4 interacciones fundamentales conocidas, la fuerza nuclear fuerte. Es una fuerza atractiva y muy intensa, por lo que domina a la repulsión culombiana de los protones, pero tiene un muy corto alcance, sólo del orden de poco más de un fermi. Las características de este tipo de fuerza son que es una fuerza saturada (cada partícula sólo es capaz de interaccionar con un pequeño número de otras partículas), dirigida (depende de la orientación de los espines) e independiente de la carga (la fuerza entre dos protones es igual que la existente entre dos neutrones o entre protón y neutrón).

Pese a la interacción fuerte, un núcleo puede ser inestable y desintegrarse por radiactividad, e incluso fisionándose, rompiéndose en fragmentos. Núcleos pesados, como por ejemplo el del Uranio, son capaces de hacerlo naturalmente. Como bien conocemos, el proceso de fisión también puede darse por la acción de neutrones sobre núcleos de determinados elementos, lo que produce una gran liberación de energía, aprovechada en las centrales nucleares de fisión.

SEMANA13SESIÓN
40
Física 2
UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS
Aplicaciones de Física contemporánea
contenido temático
6.10 Física Nuclear

Aprendizajes esperados del grupo
Conceptuales
  • Describe algunas aplicaciones y contribuciones de la física moderna al desarrollo científico y tecnológico
  • Describe los procesos de fisión y fusión.
Procedimentales
·       Elaboración de indagaciones bibliográficas y resúmenes.
·       Presentación en equipo.
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Indagaciones bibliográficas referentes al tema.



Desarrollo del proceso
FASE DE APERTURA
-          El Profesor solicita a los equipos de trabajo que contesten las preguntas siguientes:
Pregunta
¿Qué estudia la Física Nuclear?
¿Cómo está conformado un núcleo atómico?
¿Qué tipos de energías se generan en los  núcleos atómicos?
¿Qué es una central nuclear?
¿En qué consiste una fisión nuclear?
¿En qué consiste una fusión nuclear?
Equipo
1
4
5
6
2
3
Respuesta
Es la rama de la física que estudia las propiedades y el comportamiento de los núcleos atómicos que contiene la práctica totalidad de la masa de la materia y es donde se  producen reacciones o energía.
 Está formado por protones y neutrones(denominados nucleones).
Al bombardear un átomo pesado con neutrones, el núcleo de éste se rompe o se fisiona, liberando en el proceso una enorme cantidad de energía. Al fisionarse puede emitir también neutrones, y si éstos son dos o tres, chocarán con otros átomos, produciéndose una reacción en cadena. Por esta razón, el descubrimiento del neutrón es decisivo en la energía nuclear y en particular para producir energía útil en un reactor nuclear.
Una central nuclear es una usina generadora de electricidad, al igual que las centrales térmicas o hidráulicas. El objetivo de todas es producir electricidad para el consumo doméstico e industrial del país. Una central nuclear tiene muchas similitudes con una central térmica.
Una fisión nuclear es la división del núcleo de un átomo. El núcleo se convierte en diversos fragmentos con masa casi igual a la mitad de la masa original más dos o tres neutrones.
Una fusión nuclear consiste en la unión de dos pequeños núcleos radioactivos para formar uno más grande y liberar un electrón y un protón

-          Los alumnos discuten en equipo y presentan sus respuestas y se lleva a cabo una discusión extensa.
FASE DE DESARROLLO
              Los alumnos desarrollan las actividades de acuerdo a las indicaciones del Profesor
Con el contador de partículas Geiger, encontrar la distancia máxima  para detectar las partículas emitidas por cada muestra de material.
Tabular y graficar los datos.

Equipo
Piedra de rio
Cuentas por minuto
Piedra volcánica
Cuentas por minuto
Vidrio
Cuentas por minuto
Piedra volcánica  con energía solar. Cuentas por minuto
1
28
29
20
21
2
24
20
34
13
3
26
23
17
23
4
29
18
22
17
5
27
24
24
19
6
25
28
27
22

 

-          El Profesor solicita a los alumnos abrir la página en Internet:
 para realizar las actividades siguientes:
  • Ilustrar el carácter aleatorio de la desintegración radioactiva.
  • Definir la vida media de tres radio nucleídos representativos.
  • Conectar el Becquerel y los procesos de desintegración.
  • Visualizar la evolución temporal de la ley de de crecimiento exponencial.
-          El método permitirá a los alumnos, tener un panorama de los temas que se desarrollaran durante el curso.(Que, cuando, como y donde) 
FASE DE CIERRE
    Al final de las presentaciones, se lleva a cabo una discusión extensa, en la clase, de lo  que se aprendió y aclaración de dudas por parte del Profesor.                    
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas de la siguiente sesión, de acuerdo al cronograma.
               Los alumnos que tengan PC y Programas elaboraran su informe, empleando el                   programa  Word, para registrar los resultados.
Evaluación
Informe en Power Point de la actividad.
    Contenido:
    Resumen de la Actividad.


Radioisótopos
Isótopos

Los Isótopos son átomos de un mismo elemento que tienen igual número de protones y electrones (igual número atómico) pero diferente número de neutrones (difieren en su masa atómica).

Isótopos, protones y neutrones se mantienen unidos por el núcleo gracias a la llamada interacción fuerte o fuerza nuclear. Por ello, para formar o destruir un núcleo se requiere o se libera una gran cantidad de energía.
Radiactividad

La radiactividad o radioactividad ioniza el medio que atraviesa. Una excepción lo La radiactividad puede considerarse un fenómeno físico natural por el cual algunos cuerpos o elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, etc. constituye el neutrón, que no posee carga, pero ioniza la materia en forma indirecta. En las desintegraciones radiactivas se tienen varios tipos de radiación: alfa, beta, gamma y neutrones.

Radioisótopos

Se llama radioisótopo a aquel isotopo que es radiactivo. La palabra isótopo, del griego "en mismo sitio", se usa para indicar que todos los tipos de átomos de un mismo elemento se encuentran en el mismo sitio de la tabla periódica. Los átomos que son isótopos entre sí, son los que tienen igual número atómico (número de protones en el núcleo), pero diferente número másico (suma del número de neutrones y el de protones en el núcleo). Los distintos isótopos de un elemento, difieren pues en el número de neutrones. Hay varios tipos de isotopos los cuales aún no tienen un nombre fijo ya que cambian constantemente.

SEMANA13SESIÓN
40
Física 2
UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS
Aplicaciones de Física contemporánea
contenido temático
6.10 Física Nuclear

Aprendizajes esperados del grupo
Conceptuales
  • Describe algunas aplicaciones y contribuciones de la física moderna al desarrollo científico y tecnológico
  • Describe los procesos de fisión y fusión.
Procedimentales
·       Elaboración de indagaciones bibliográficas y resúmenes.
·       Presentación en equipo.
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Indagaciones bibliográficas referentes al tema.



Desarrollo del proceso

FASE DE APERTURA
-          El Profesor solicita a los equipos de trabajo que contesten las preguntas siguientes:
Pregunta
¿Qué es un radioisótopo?
¿Cómo se generan los radioisótopos radiactivos?
¿Cuáles son los radioisótopos mas usados en México?
¿Cuáles  son las aplicaciones principales de los isotopos radiactivos?
¿Qué es el ININ y sus principales actividades
¿
¿Qué estudia la Física Solar?
Equipo
2
5
4
3
6
1
Respuestas
Son isótopos radiactivos ya que tienen un núcleo atómico inestable (por el balance entre neutrones y protones) y emiten energía y partículas cuando cambia de esta forma a una más estable. La energía liberada al cambiar de forma puede detectarse con un contador Geiger o con una película fotográfica.

 Los radioisótopos más frecuentemente usados son: Oro 198, Yodo 125.
Uno es el tecnecio que se utiliza para la reconstrucción de vasos sanguíneos en la medicina otros se usan para la reconstrucción de cronologías en la arqueología
Es el instituto nacional de investigaciones nucleares y se dedica a la supervisión de las investigaciones del gobierno federal en cuanto a energía nuclear
Es la rama de la física que estudia los fenómenos solares, su importancia y aprovechamiento de la energía solar.

-          Los alumnos discuten en equipo y presentan sus respuestas y se lleva a cabo una discusión extensa.
FASE DE DESARROLLO
              Los alumnos desarrollan las actividades de acuerdo a las indicaciones del Profesor
-          El Profesor solicita a los alumnos abrir la página en Internet:
             para realizar las actividades siguientes:
  • Ilustrar el carácter aleatorio de la desintegración radioactiva.
  • Definir la vida media de tres radio nucleídos representativos.
  • Conectar el Becquerel y los procesos de desintegración.
  • Visualizar la evolución temporal de la ley de decrecimiento exponencial.
-          El método permitirá a los alumnos, tener un panorama de los temas que se desarrollaran durante el curso.(Que, cuando, como y donde) 
FASE DE CIERRE
    Al final de las presentaciones, se lleva a cabo una discusión extensa, en la clase, de lo  que se aprendió y aclaración de dudas por parte del Profesor.                    
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas de la siguiente sesión, de acuerdo al cronograma.
               Los alumnos que tengan PC y Programas elaboraran su informe, empleando el                   programa  Word, para registrar los resultados.
Evaluación
Informe en Power Point de la actividad.
    Contenido:
    Resumen de la Actividad.


Física Solar

Es  es la rama de la física que estudia los fenomenos solares, su importancia y aprovechamiento de la energia solar.

La Tierra está inmersa en la atmósfera externa ionizada que escapa supersónicamente del Sol.  Este ″viento  solar,″ fluye a través del medio interplanetario alcanzando el campo magnético  terrestre dándole forma al medio-ambiente cercano a  la Tierra.  La burbuja magnética que se produce, llamada  "magnetosfera," ya que es modelada básicamente a partir del campo magnético terrestre por el campo magnético interplanetario, actúa como blindaje que protege  su interior (nuestra atmósfera superior junto a su región ionizada, la ionosfera) de los efectos directos del viento solar.

El Sol, que es la mayor fuente de energía del Sistema Solar, libera su energía en forma de radiación electromagnética ("luz") y de partículas energéticas. De esta manera, por una parte, el Sol ilumina constantemente a la Tierra proporcionándole un flujo de energía de 1367 W/m2, conocida como la constante solar; a la vez que, por otro lado, su atmósfera (la corona solar, demasiado caliente como para ser retenida por el campo gravitacional) se proyecta de tal manera que la Tierra es influenciada por el viento solar a través de un flujo continuo de partículas, como también de sucampo magnético asociado.

La radiación electromagnética resulta ser varios órdenes de magnitud mayor que la radiación de las partículas. La potencia de entrada en la Tierra,  debida a la iluminación, considerando una sección eficaz ðRE 2, donde RE es el radio terrestre medio, es de 1.73x1017 W.

La energía del viento solar que incide sobre la magnetosfera terrestre, cavidad formada por la interacción entre el campo geomagnético aproximadamente dipolar y el viento solar que tiene asociado el campo magnético interplanetario (ver figura previa),  es del orden de 1.3x 1013 W, considerando una sección eficaz de radio igual a 15 RE [Hill, 1979]. Para una sección eficaz de un disco de radio terrestre que absorbe toda la energía cinética del viento solar  incidente, esto es en  ausencia de campo geomagnético, la potencia sería del orden de 5.7 x 1010 W.

A pesar de la gran diferencia entre los valores de las potencias disponibles en las vecindades de la Tierra a través de las dos formas de radiación, es el viento solar el encargado de acoplar la atmósfera solar con la magnetosfera y la ionosfera (región ionizada de la atmósfera) terrestre, y la mayoría de los procesos magnetosféricos e ionosféricos asistidos por la magnetosfera son debidos a esta energía.

La fuente del viento solar es la  corona cuya energía proviene de la zona de convección solar .  Debido al enorme gradiente de temperatura entre la base de la corona y la zona de  transición, la mayor parte de la energía} depositada en la corona es conducida  en dirección a la cromosfera  la cual es energizada de esta manera. Otra  parte de la corona, la cual está estructurada de  campos magnéticos muy intensos, está constantemente escapando del campo gravitacional del Sol  a lo largo de las líneas de campo abiertas, huecos coronales (coronal holes)   y llamaradas (flares),  es lo que se conoce como  viento solar. Esta parte está constituida principalmente  de hidrógeno, 96%,y helio, 3.2%, ionizados. El 0.8% restante está constituido por elementos altamente ionizados como   O, N, C, Si, Fe  [Schwenn, 1988].

Un tipo de evento solar es la llamada   llamarada  solar "solar flare" debido a que el abrillantamiento de una pequeña área en el Sol anuncia su ocurrencia.
La magnetosfera terrestre es la región que más se ha estudiado en Física Espacial, conformando la Física Magnetosférica la parte central de la Física Solar-Terrestre, donde resulta crucial el estudio de las tempestades y subtempestades magnéticas. Sin embargo, aún no se ha establecido un modelo suficientemente consistente para predecir su comportamiento,  y entender los procesos claves que constituyen las conexiones entre el Sol y la Tierra, esto es del Clima Espacial.

A medida que estén disponibles más y más observaciones, los modelos globales del sistema viento solar - magnetosfera - ionosfera - atmósfera podrán ser desarrollados, refinados   y  mejorados cada vez más hasta el punto en que se podrían realizar predicciones útiles de manera rutinaria.

El Sol es el elemento más importante en nuestro sistema solar. Es el objeto más grande y contiene aproximadamente el 98% de la masa total del sistema solar. Se requerirían ciento nueve Tierras para completar el disco solar, y su interior podría contener más de 1.3 millones de Tierras. La capa exterior visible del Sol se llama la fotosfera y tiene una temperatura de 6,000°C (11,000°F). Esta capa tiene una apariencia manchada debido a las turbulentas erupciones de energía en la superficie.

La energía solar se crea en el interior del Sol. Es aquí donde la temperatura (15,000,000° C; 27,000,000° F) y la presión (340 millardos de veces la presión del aire en la Tierra al nivel del mar) son tan intensas que se llevan a cabo las reacciones nucleares. Éstas reacciones causan núcleos de cuatro protones ó hidrógeno para fundirse juntos y formar una partícula alfa ó núcleo de helio. La partícula alfa tiene cerca de .7 por ciento menos masa que los cuatro protones. La diferencia en la masa es expulsada como energía y es llevada a la superficie del Sol, a través de un proceso conocido como convección, donde se liberan luz y calor. La energía generada en el centro del Sol tarda un millón de años para alcanzar la superficie solar. Cada segundo se convierten 700 millones de toneladas de hidrógeno en cenizas de helio. En el proceso se liberan 5 millones de toneladas de energía pura; por lo cual, el Sol cada vez se vuelve más ligero.

La cromosfera está sobre la fotosfera. La energía solar pasa a través de ésta región en su trayectoria de salida del Sol. Las Fáculas y destellos se levantan a la cromosfera. Las Fáculas son nubes de hidrógeno brillantes y luminosas las cuales se forman sobre las regiones donde se forman las manchas solares. Los destellos son filamentos brillantes de gas caliente y emergen de las regiones de manchas solares. Las manchas solares son depresiones obscuras en la fotosfera con una temperatura promedio de 4,000°C (7,000°F).
La corona es la parte exterior de la atmósfera del Sol. Es en ésta región donde aparecen las erupciones solares. Las erupciones solares son inmensas nubes de gas resplandeciente que se forman en la parte superior de la cromosfera. Las regiones externas de la corona se estiran hacia el espacio y consisten en partículas que viajan lentamente alejándose del Sol. La corona se puede ver sólo durante los eclipses totales de Sol.

El sol aparentemente ha estado activo por 4,600 millones de años y tiene suficiente combustible para permanecer activo por otros cinco mil millones de años más. Al fin de su vida, el Sol comenzará a fundir helio con sus elementos más pesados y comenzará a hincharse, por último será tan grande que absorberá a la Tierra. Después de mil millones de años como gigante rojo, de pronto se colapsará en una enana blanca -- será el final de una estrella como la conocemos. Puede tomarle un trillón de años para enfriarse completamente.

Y la recapitulación de los mismos…

SEMANA14
SESIÓN
42
Física 2
UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS
contenido temático
RECAPITULACION 14

Aprendizajes esperados del grupo
Conceptuales
·         Comprenderá las características de la Física solar, nuclear y los radioisótopos.
Procedimentales
·       Elaboración de resúmenes y de conclusiones.
·       Presentación en equipo
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Presentación de la información recabada en las dos sesiones anteriores.



Desarrollo del proceso
FASE DE APERTURA 
- Cada equipo realizara una autoevaluación de los temas aprendidos en las dos sesiones anteriores.
1. ¿Qué temas se abordaron?
2.  ¿Que aprendí?
 3. ¿Qué dudas tengo?
Equipo
1
2
3
4
5
6
Respuestas
1)Física nuclear, Radioisótopos; física solar.
2)Aprendimos que es la física nuclear y sus característica, también aprendimos que es un radioisótopo y sus utilidades; y por último que es la física solar que es la que nos impulsa en todo lo que hacemos ya que es la mayor fuente de energía
3) ninguna

1) Física nuclear, radioisótopos y física solar.
2) La física nuclear es una rama de la física que estudia las propiedades y el comportamiento de los núcleos atómicos.
Un radioisótopo es el variante de un elemento que difiere en la cantidad de neutrones que posee conservando el mismo número de protones y que la física solar es la rama de la física que estudia los fenómenos solares, su importancia y aprovechamiento.
3) Ninguna
1.- vimos los temas de energía nuclear los radioisótopos y la física solar
2.- aprendimos que y como estudia la física nuclear aprendimos que son  los radio isotopos y como se conforman aprendimos también que es la física solar y que estudia
3.- ninguna
1.-La Física nuclear, los radioisótopos, los temas de la energía.
2.-Aprendimos sobre la física nuclear, sus usos y propiedades, y como es que se comportan los radioisótopos, vimos que son variantes de un elemento , que es la física solar que es la que nos impulsa con todo día a día, y que es la fuente de energía principal y la mayor.
3.- Ninguna
1.- Los temas que vimos esta semana son: física nuclear, física solar y radioisótopos.
2.- Lo que aprendimos  fue a identificar como influye la física nuclear en el proceso de transformación que sufre la energía, el concepto de radioisótopos y qué es la física solar.
3.- Ninguna.   
1)física nuclear , radioisótopos, física solar.
2) aprendimos como se emplea la física nuclear y cuáles son sus aplicaciones y características, además que es un radioisótopo y como se forma.
3) ninguna.


FASE DE DESARROLLO
- Les solicita que un alumno de cada equipo  lea el resumen elaborado.
- El Profesor pregunta acerca de las dudas que tengan acerca de los temas vistos en las dos sesiones anteriores, Física nuclear, Física Solar y Radioisótopos.
FASE DE CIERRE 
El Profesor concluye con un repaso de la importancia de la Física nuclear, Física Solar y Radioisótopos.
Revisa el trabajo a cada alumno y lo registra en la lista.
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas siguientes de acuerdo al cronograma, solicitándoles que incluyan fotos de los experimentos en el Blog que contendrá su información, asimismo se les solicitara que los equipos formados, se comuniquen vía e-mail u otro  programa para comentar y analizar los resultados para presentarla al Profesor en la siguiente clase.
Los alumnos que tengan PC y Programas elaboraran su informe, empleando el programa  Word, para registrar los resultados.  
Evaluación
Informe en Power Point de la actividad.
    Contenido:
    Resumen de la Actividad.
Referencias
Visita virtual a:
Planta Nuclear Laguna Verde Veracruz
 Instituto de energía nuclear, IIE
Instituto Nacional de Investigaciones Nucleares  ININ,
 Centro de Investigación de Energía CIE Temixco.






SEMANA 14
21, 23, 24. 04. 2015
http://fisica-espacial.umag.cl/step.html
http://www.solarviews.com/span/sun.htm
http://www.sociedadelainformacion.com/departfqtobarra/nuclear/nucleo.htm#1.- Características de los núcleos atómicos. Fuerza que los mantiene unidos.


No hay comentarios.:

Publicar un comentario